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INVESTIGATION O F  "HE DYNAMIC SWILITY AND 

C0NTROLI;ABILITY O F  A TOWED MODEL OF A 

M O m F I E D  HALF-CONE FEEKCRY VEHICLZ 

By Robert E. Shanks 

SUMMARY 

A n  investigation of the low-speed dynamic s t a b i l i t y  and control labi l i ty  of 

The 
Tests 

a 1/3-scale model of a modified half'-cone reentry vehicle i n  towed f l i gh t  has 
been made i n  the Langley ful l -scale  tunnel by means of flying-model t e s t s .  
model was tes ted  with and without a r t i f i c i a l  damping i n  r o l l  and i n  yaw. 
were made through a towline-angle range from -5O (high tow) t o  6 O  (low tow). 

The investigation showed tha t ,  i n  general, the  model had sat isfactory lon- 
gitudinal s t a b i l i t y  and control character is t ics  but unsatisfactory l a t e r a l  sta- 
b i l i t y  character is t ics  due t o  a combination of a l i gh t ly  damped Dutch r o l l  
osci l la t ion and an unstable long-period osc i l la t ion  i n  which r o l l  and sidewise 
motions were large i n  comparison with yaw displacements. 
could be controlled f a i r l y  easi ly  with e i ther  coordinated aileron and rudder 
control o r  rudder-alone control but not with aileron-alone control. This com- 
bination of s t a b i l i t y  and control labi l i ty  was considered unsatisfactory f o r  
general operation but acceptable f o r  re la t ively short periods of operation 
under visual  conditions. 
f l i gh t s  smoother and the control easier,  but the model was s t i l l  unstable; the  
addition of a r t i f i c i a l  damping i n  yaw made the model s table ,  but the  rol l ing 
motions were dauqed only moderately well; and the  addition of both damping i n  
r o l l  and damping i n  yaw resulted i n  a very s table  towed model. 

The adverse motions 

The addition of a r t i f i c i a l  damping i n  r o l l  made the 

INTRODUCTION 

The National Aeronautics and Space Administration has undertaken a program 
t o  study the problems of piloted lifting-body reentry vehiele configurations i n  
gliding f l i g h t  and landing a t  subsonic speeds. Part of t h i s  program, described 
i n  reference 1, consisted of f l i g h t  t e s t s  of a vehicle of a modified half-cone 
configuration through a wing-loading range from 7 t o  20 pound6 per square foot. 
This unpowered vehicle was t o  be towed up t o  a l t i t ude  and released i n  free- 
gliding flight. I n  order t o  a s s i s t  i n  the flight t e s t  program, the present 
study was made i n  the Langley ful l -scale  tunnel t o  provide information on the 
tow behavior of the vehicle. I n  addition t o  the tow t e s t s  of the  model, force 
tests were made i n  a low-speed tunnel with a 12-foot octagonal t e s t  section a t  



t he  Langley Research Center over an angle-of-attack range from Oo t o  30° t o  
determine the s t a t i c  s t a b i l i t y  and control character is t ics .  The r e su l t s  of 
t e s t s  made t o  determine the  s t a b i l i t y  and control charac te r i s t ics  of an earlier 
configuration of t h e  modified half-cone reentry vehicle i n  free f l i g h t  a r e  pre- 
sented i n  reference 2. 

Motion-picture supplement L-841 has been prepared and i s  available on loan. 
A request card and a description of the  f i l m  are included a t  the back of t h i s  
document. 

SYMBOLS 

The l a t e r a l  data a re  referred t o  the  body-axis system and t h e  longitudinal 
data are referred t o  t h e  wind-axis system. Because of bal- 
l a s t ing  l imi ta t ions  the design center of gravi ty  i s  below the  test  center of 
gravi ty  and therefore the lateral data a re  presented about both posit ions.  The 
coeff ic ients  are based on a planform area of 13.2 square f ee t ,  a mean geometric 
chord of 4.93 f ee t ,  and a span of 3.05 feet. 

(See f i g .  1.) 

b wing span, f t  

- 
C mean geometric chord, ft  

CD drag coeff ic ient ,  FD/qS 

CL l i f t  coefficient,  FL/qS 

rolling-moment coeff ic ient ,  % / q S  C2 

c, pitching-moment coefficient,  My/qSE 

Cn yawing-moment coeff ic ient ,  Mz/clSb 

side-force coefficient,  Fy/qS 

&2 ro l l i ng  moment due t o  yawing, - 

= N 2  -, per degree 
czB 4 3  
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yawing moment due t o  roll ing,  - 
a@) 

&n damping i n  yaw, ‘nr 

= 5, per degree Cnfi AB 

M Y  Cyyp = w, per degree 

drag, lb 

l i f t ,  l b  

s ide force, l b  

CL 
CD 

l i f t -drag  ra t io ,  - 

moment of i n e r t i a  about longitudinal body a x i s ,  slug-ft2 

moment of i ne r t i a  about l a t e r a l  body axis, slug-ft2 

moment of i ne r t i a  about normal body axis, slug-ft2 

Mach number 

rol l ing moment, f t - lb  

pitching moment, f t - lb  

yawing moment, f t - lb  

ro l l ing  velocity, radians/sec 

dynamic pressure, pV2/2, lb/sq ft 

yawing velocity, radians/sec 

radius, in.  

wing area, sq f t  

free-stream velocity, f t /sec 
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weight, l b  

wing loading, lb/sq f t  

body reference axes unless otherwise noted 

angle of attack, deg 

angle of s idesl ip ,  deg 

elevon deflection (posit ive f o r  t r a i l i n g  edge down measured from 
reference plane), deg 

deflection of e i ther  trailing-edge f lap,  posi t ive f o r  t r a i l i n g  edge 
down (neutral  position defined as that posit ion where f l ap  i s  
tangent t o  sloped upper surface of body), deg 

d i f f e ren t i a l  deflection of trailing-edge trimmer f laps  when used as  
ailerons f o r  roll control, 6f,R - 6f,L (neutral  position defined 
as tha t  posit ion where f l ap  i s  tangent t o  sloped upper surface of 

deflection of trailing-edge f laps  when used together as  elevator f o r  

body), deg 

pi tch control, 6 f JR  + 6fJL  (neutral  posit ion defined as  tha t  
2 

position where f lap  i s  tangent t o  sloped upper surface of body), 
de@; 

rudder deflection for  yaw control (posit ive when t r a i l i n g  edge i s  
deflected t o  l e f t ,  6 , , ~  + 6 , ,~ ) ,  deg 

inclination of principal axis of i ne r t i a ,  deg 

a i r  density, slugs/cu f t  

Subscripts: 

L l e f t  

R r ight  

APPARATUS AND TESTS 

Model 

I n  order t ha t  the tunnel tow t e s t s  might be made i n  time t o  be of use i n  
the  full-scale f l i g h t  program, the 1/3-scale model used i n  the previous wind- 
tunnel free-fl ight investigation ( r e f .  2) was used although the configuration 
was not exactly the same as tha t  of the fLiLL-size vehicle. Alterations t o  the 
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model t o  make it conform more closely t o  the fu l l - s ize  vehicle included modifi- 
cation of the elevons, rudders, and trailing-edge f laps  and the addition of a 
center f i n  and a canopy. 
difference between the model tested and the ful l -s ize  vehicle w a s  the  cross- 
sectional shape of the  afterbody. 
which were essent ia l ly  semicircular f o r  the length of the body, the ful l -s ize  
vehicle cross section changed from semicircular t o  almost rectangular i n  the 
last 40 percent of the  body length. 

(See f ig .  2.) With these changes the only geometric 

Whereas the model tes ted  had cross sections 

For the tow tests, the model controls were operated remotely by p i l o t s  by 
means of f l i cke r  (full on o r  fu l l  o f f )  pneumatic servomechanisms which were 
activated by e l ec t r i c  solenoids. A r t i f i c i a l  s tab i l iza t ion  i n  r o l l  and i n  yaw 
w a s  provided f o r  some t e s t s  by simple rate dampers. An air-driven rate gyro- 
scope w a s  the  sensing element, and the  s ignal  w a s  fed in to  a servoactuator 
which deflected the trailing-edge f laps  i n  proportion t o  the ro l l ing  velocity 
and the rudders i n  proportion t o  the yawing velocity. The r o l l  damper added 
an increment i n  damping i n  r o l l  Ly=z of -1.0; but because of adverse yawing 

moments produced by the ailerons,  the r o l l  damper a lso added an increment i n  
yawing moment due t o  ro l l ing  Ly= of about 0.5. The yaw damper produced two 

amounts of incremental damping i n  yaw of -2.0 and -4.0; but because of 
adverse rol l ing moments produced by the rudders, the yaw damper also added 
increments i n  ro l l ing  moment due t o  yawing Ly=z of 0.8 and 1.6. Manual con- 

t r o l w a s  superimposed on the control deflection resul t ing f r o m  the r a t e  signal. 
The trailing-edge f laps  were operated together f o r  elevator control and differ- 
en t ia l ly  f o r  aileron control. The elevon surfaces were usually fixed but could 
also be linked t o  operate wlth the trailing-edge flaps.  

( p) 

0 ( "P) 
ACnr 

( 4 

A comparison of the m a s s  character is t ics  of the model and of the fu l l - s ize  
vehicle a re  presented i n  tab le  I. The model was obviously too heavy t o  repre- 
sent the lightest-weight vehicle (W/S = 7 lb/sq f t )  used i n  low-speed flight 
studies, but be t t e r  represents the vehicle a t  the higher wing loadings. 

Test Equipment and Setup 

The force t e s t s  w e r e  conducted a t  the Langley Research Center i n  a low- 
speed tunnel having a =-foot octagonal test  section. "he model was s t ing  
mounted, and forces and moments w e r e  measured about the  body axes with strain- 
gage balances. 

FUght tests t o  study the dynamic s t a b i l i t y  and control character is t ics  
of the model i n  towed f l i g h t  were conducted i n  the Langley full-scale tunnel 
with the t e s t  setup i l l u s t r a t e d  i n  figure 3. 
inch-diameter, model scale, o r  1/5-inch-diameter, full scale) w a s  attached t o  
the turning vanes ahead of t he  tunnel contraction. T h i s  arrangement resulted 
i n  a towline length of 140 fee t ,  model scale, o r  450 feet, f u l l  scale. 
head cable, similar t o  the cable used i n  f ree-f l lght  tests described i n  refer- 
ence 3,  supplied e l ec t r i c  power and compressed a i r  f o r  the controls when the 
model was flown i n  the open-throat tes t  section of the tunnel. 

An a i r c r a f t  cable towline (1/16- 

A n  over- 

Combined with 
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this cable was  a safety cable t o  prevent crashes should the motions become too 
violent and the model go out of control. 
cable i n  and out t o  keep it slack during the tests. 

The safety cable operator payed the  

TESTS 

Force Tests 

In order t o  a id  i n  the interpretat ion of the f l i g h t  t e s t s ,  force t e s t s  
were made t o  determine the  s t a t i c  longitudinal and lateral s t a b i l i t y  and con- 
t r o l  character is t ics  of the model. The t e s t s  w e r e  made a t  a dynamic pressure 
of 5.76 pounds per square foot,  whlch corresponds t o  an airspeed of 69.5 f e e t  
per second a t  standard sea-level conditions and t o  a test Reynolds number of 
2.2 x 10 6 based on the mean geometric chord of 4.93 fee t .  

Flight Tests 

Flight tests were made t o  determine the dynamic s t a b i l i t y  and control 
character is t ics  of the model i n  towed f l i g h t .  
of a t tack  f r o m  14' t o  18O f o r  a towline-angle range from -5O (high tow) t o  
6 O  ( l o w  tow) and at tunnel speeds from 81 t o  96 feet 
t o  a Reynolds number range f r o m  2.5 x 10 

The tests were made a t  angles 

e r  second corresponding 
6 i! t o  5.0 x 10 . 

Flights  were made with coordinated ai leron and rudder control, with 
rudder-alone control, and with aileron-alone control. The control deflections 

with the dampers not operating. When the r o l l  damper w a s  operating, the man- 
ual ai leron control w a s  reduced t o  kl4O; and when the yaw damper w a s  operating, 
the manual rudder control was  reduced t o  k14O for the lower amount of ar t i f i -  
c i a l  damping i n  yaw and t o  so f o r  the higher amount. 

used f o r  most of the f l i g h t s  w e r e  = S O o ,  6f,e = Bo, and 6, = k1T 

S t a t i c  Longitudinal S t a b i l i t y  and Control 

The results of t he  s t a t i c  longitudinal s t a b i l i t y  and control tests are  
shown i n  figure 4 f o r  an angle-of-attack range from 0' t o  30° f o r  t r a i l l ng -  
edge flap deflections of Oo, -5O, -loo, and -20'. The f l aps  a re  shown i n  the 
Oo posit ion in figure 2. The data of figure 4 show that the model has s t a t i c  
longitudinal s t a b i l i t y  over the angle-of-attack range from 0' t o  20' but that 
the s t a b i l i t y  decreases and the model becomes unstable as the  angle of at tack 
increases further.  
nearly constant increments of pitching moment and appears t o  have very l i t t l e  
e f fec t  on the s t a t i c  longitudinal s t ab i l i t y .  
t o  t h e  test center of gravity but i f  referred t o  the  design center of gravity 
the.moment data would be vir tual ly  the  same. The basic s t a t i c  longitudinal 

6 

Upward deflection of the trailing-edge f laps  produces 

The data of figure 4 are referred 



data appear t o  be i n  reasonably good agreement with corresponding data from 
reference 4 fo r  a similar model tes ted a t  somewhat higher speed (M = 0.40) and 
Reynolds number (4.45 x lo6). 
a t t r ibu ted  t o  differences i n  canopy s ize  and afterbody shape of the models. 

The  differences which ex is t  can probably be 

S t a t i c  Lateral  S tab i l i ty  and Control 

The s t a t i c  l a t e r a l  s t a b i l i t y  character is t ics  of the model were determined 
over an angle-of-attack range from 0' t o  30° for  a s idesl ip  range from -20' 
t o  +ao. 
i n  figure 5(b) f o r  the  model without the center f i n .  
i n  f igures  6 and 7 i n  the  form of the s t a b i l i t y  derivatives Cys, 

The results are presented i n  figure 5(a) f o r  the complete model and 
These data a re  summarized 

Cnp, and 

The values of these derivatives were plotted against angle of attack. 
c'ls 
obtained from the differences between the values of t he  coefficients measured 
a t  s ides l ip  angles of 5O and -5O.  
l i nea r i ty  a t  the larger  s ides l ip  angles, the derivatives presented i n  figures 6 
and 7 are  only used t o  indicate trends and t o  provide comparisons of the con- 
figurations fo r  the  s ides l ip  range from 5" t o  -5O. 

Since the data of f igure 5 show some non- 

The data of figures 6 and 7 show tha t  both the complete model and the 
model without the  center f i n  have posit ive directional s t a b i l i t y  and effective 
dihedral over the  angle-of-attack range, although the direct ional  s t a b i l i t y  of 
the model without the center f i n  i s  very low fo r  a small angle-of-attack range 
near 20°. 
direct ional  s t a b i l i t y  Cn i s  higher f o r  t he  complete model than f o r  the model 

with the center f i n  off ;  however, the center f i n  had v i r tua l ly  no e f fec t  on the 
effective-dihedral parameter ( 4 ~ ~ ) .  

data presented i n  reference 4. 
greater when referred t o  the  design center of gravity than when referred t o  the  
t e s t  center of gravity d i rec t ly  above it and tha t  the increment i s  generally 
constant. 

The comparisons made i n  f igure 7 indicate tha t ,  as expected, the 

( 4 
These results generally agree with the 

Figure 6 shows t h a t  the effect ive dihedral i s  

The rudder effectiveness of the model i s  shown i n  figure 8. The yawing 
moments produced by the rudders decreased by more than 50 percent as the angle 
of a t tack increased. 
ciable, with values of approximately 40 percent of the yawing moments. 

Adverse ro l l ing  moments due t o  yawing moments were appre- 

The aileron effectiveness of t he  trailing-edge f l aps  deflected differen- 
t i a l l y  from elevator t r i m  set t ings 

The ro l l ing  effectiveness of the  f laps  was only about one-half a s  great f o r  
deflectfon from the Oo t r i m  se t t ing  a s  from the -loo t r i m  setting. This resu l t  
would seem t o  indicate the  presence of separated flow, o r  a very thick boundary 
layer,  over the f laps  f o r  the Oo t r i m  sett ing; and such a condition would not 
be surprising i n  view of the large upper-surface b o a t t a i l  angle of the body. 
The data of figure 9 a l so  show tha t  the rol l ing moments were accompanied by 
adverse yawing moments approximately one-half a s  large as the  ro l l ing  moments. 

of Oo and -loo i s  shown i n  figure 9 .  
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I I..II ..I.,.. . _....-- 

FLIGHT-TEST IZESULTS AND DISCUSSION 

A motion-picture f i lm supplement (film serial L-841) covering flight tests 
of the model has been prepared and i s  available on loan. 

Most of t he  tow tests were made at  towline angles between -3O (high tow) 
and 6O (low tow) and a t  airspeeds of about 92 f e e t  per second (model scale) t o  
simulate the towline angles and veloci ty  conditions f o r  ground tow and i n i t i a l  
a i r  tow. The l i f t  coefficient f o r  the model tests w a s  considerably higher, 
however, than that expected f o r  the flight vehicle on tow because of the much 
higher-than-scale wing loading of the model. 

Longitudinal S t ab i l i t y  

The longitudinal s t a b i l i t y  w a s  generally sat isfactory.  Occasionally, a 
disturbance would exci te  a short-period (about 1 second) forward and backward 
t rans la t iona l  motion of small amplitude (about 7 percent of body length).  
longitudinal motion w a s  s table  and was damped out i n  several cycles. The 
osc i l la t ion  w a s  caused by resi l ience of the tow cable which had a spring con- 
s tan t  of about 1.5 pounds per inch. 
from t h e  straightening of the catenary than s t r e t ch  of the cable. 

This 

T h i s  res i l ience  of the cable resulted more 

Lateral  S t ab i l i t y  and Control 

Basic configuration.- The tow tests showed that  the model i n  the basic  
configuration had two undesirable stick-fixed s t a b i l i t y  character is t ics  - 
(1) a l i g h t l y  damped Dutch r o l l  osc i l la t ion ,  and (2) an unstable long-period 
osc i l la t ion  of a type which i s  sometimes cal led a towline osc i l la t ion .  

The l i g h t l y  damped Dutch r o l l  osc i l la t ion  had a period of about 1 second. 
It was generally pilot-excited through control inputs and required at  l e a s t  
three cycles t o  damp completely. T h i s  motion could be controlled by careful  
use of coordinated rudder and ai leron control.  

The unstable long-period osc i l la t ion  consisted of sidewise displacement 
and ro l l i ng  motions which were large r e l a t ive  t o  the  yawing motions. The char- 
a c t e r i s t i c s  of the long-period osc i l la t ion  appeared t o  be unaffected by towline 
angle f o r  the range of t h i s  investigation (-3O high tow t o  6' low tow). If the  
l a t e r a l  motions were not controlled, t he  model would diverge out of the test  
section of the  tunnel i n  less than one cycle; but,  because of the re la t ive ly  
long period of the  osc i l la t ion  (about 6 seconds, model scale, or  11 seconds, 
f u l l  scale) ,  t h e  motions could be eas i ly  controlled by careful use of coordi- 
nated rudder and a i le ron  control or  rudder-alone control. Eowever, sustained 
flights with aileron-alone control were impossible, probably because of the 
r e l a t ive ly  la rge  unfavorable yawing moments accompanying the ro l l i ng  moments. 
(See f i g .  9.) The model w a s  not flown with the  outboard elevons used alone for  
r o l l  control, but subsequent investigations have shown that elevons alone can 
provide acceptable r o l l  control f o r  the f l i g h t  vehicle.  The elevons were not 



used alone i n  the present study because the control data of reference 2 had 
indicated tha t  t he  yawing moments accompanying the  ro l l i ng  moments produced by 
the  trailing-edge f l a p s  were smaller than those produced by the outboard ele-  
vons i n  the angle-of-attack range which w a s  somewhat higher f o r  t h e  model 
(14' t o  18O) than f o r  the  t e s t  vehicle ( 3 O  t o  12O). 

The overal l  l a t e r a l  s t a b i l i t y  and control charac te r i s t ics  of t he  basic  
model i n  towed flight w e r e  considered unsatisfactory f o r  general operation but 
acceptable for  t he  type of operation envisioned f o r  the  research g l ider  - that 
is, f o r  r e l a t ive ly  short  periods of towed f l i g h t  under visual  flight conditions. 

Model without center f in . -  A f e w  t e s t s  w e r e  made with the  center f i n  
removed; and although the  model was found t o  be s l i gh t ly  more d i f f i c u l t  t o  con- 
t r o l  i n  t h i s  configuration than i n  the bas ic  configuration, the  difference w a s  
not s ignif icant .  

Addition of damping i n  ro l l . -  The addition of r o l l  r a t e  damping 
(ACzp = -1.0 and hc 

of t he  model grea t ly  increased the  damping of the  Dutch r o l l  osc i l la t ion  so 
that t h i s  motion w a s  no longer apparent; however, t he  added damping had v i r tu-  
a l l y  no e f f ec t  on the unstable t rans la t iona l  osc i l la t ion .  
use of control was required t o  prevent the  divergence of this long-period 
osc i l la t ion ,  the control task  was easier with t h e  additional r o l l  damping and 
the  flights w e r e  somewhat smoother. 

= 0.5 t o  improve the  lateral  s t a b i l i t y  charac te r i s t ics  
nP 

Although constant 

Addition of damping i n  yaw.- Two amounts of yaw rate damping were added t o  

and E t r  = 0.8 
improve the  l a t e r a l  s t a b i l i t y  character is t ics .  The smaller amount of a r t i f i -  
c i a l  damping i n  yaw E n r  = -2.0 

t h a t  the  model could be controlled with ai lerons alone, although rudder-alone 
control and coordinated ai leron and rudder control w e r e  more sat isfactory.  
With the  la rger  amount of damping i n  y a w  N n r  = -4.0 and ACzr = 1.6 the  tow 

charac te r i s t ics  of the  model were even more sat isfactory.  The t rans la t iona l  
osc i l la t ion  and Dutch r o l l  osc i l la t ion  w e r e  both stable, but the  Dutch r o l l  
w a s  not as w e l l  damped as it w a s  with the r o l l  damper operating. 

improved the  s t a b i l i t y  so ( ) 

( ) 

Adlition of damping; i n  r o l l  and yaw.- The most s table  tow condition w a s  
obtained when both a r t i f i c i a l  r o l l  and yaw damping & = -1.0 and 

ACnr = -2.0 were added. The damping of both the  t rans la t iona l  and the Dutch 

r o l l  osc i l la t ions  w e r e  deadbeat i n  the  two best configurations - (1) the  con- 
f igurat ion with center f i n  on, l eve l  tow, and elevons trimmed a t  -20°, and 
(2) a similar configuration with the  elevons trimmed a t  -30° but linked t o  move 
with the trail ing-edge control surfaces. When the elevons were fixed a t  t r i m  
angles of Oo o r  -30°, however, the  t rans la t iona l  o sc i l l a t ion  w a s  only l i g h t l y  
damped even though the  towline angle and angle of a t tack  w e r e  the  same as f o r  
t h e  configuration with the  elevons fixed a t  -2OO. 
r e su l t  i s  apparent. The tow condition f o r  a r t i f i c i a l  r o l l  damping i n  conjunc- 
t i o n  with the  l a rge r  amount of yaw damping LE,, = -4.0 w a s  not investigated. 

( P  
) 

No explanation f o r  this 

( ) 
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CONCLUSIONS 

The r e su l t s  of an investigation i n  the  Langley ful l -scale  tunnel t o  study 
the  s t a b i l i t y  and control character is t ics  of a towed model of a lifting-body 
reentry model can be summarized as follows: 

1. The longitudinal s t a b i l i t y  w a s  generally sat isfactory.  

2. The lateral  s t a b i l i t y  of the basic  configuration w a s  unsatisfactory 
because of a combination of a l i g h t l y  damped Dutch r o l l  osc i l la t ion  and an 
unstable long-period osc i l la t ion  which consisted of large amounts of r o l l  and 
sidewise motion compared with the  yaw displacements. 

3 .  The basic model could be controlled f a i r l y  eas i ly  by use of coordinated 
rudder and aileron control and by rudder-alone control, but it w a s  uncontrol- 
l ab l e  with aileron-alone control. 

4. The foregoing combination of s t a b i l i t y  and cont ro l lab i l i ty  w a s  con- 
sidered unsatisfactory f o r  general operation but acceptable f o r  r e l a t ive ly  
short  periods of operation under visual  f l i g h t  conditions. 

5. The addition of a r t i f i c i a l  damping i n  r o l l  made the f l i g h t s  smoother 
and the  control easier ,  but the model w a s  s t i l l  unstable. 
a r t i f i c i a l  damping i n  yaw made the  model s table ,  but the ro l l ing  osc i l la t ion  
w a s  damped only moderately w e l l .  
i n  yaw resulted i n  a very s tab le  towed model. 

The addition of 

Addition of both damping i n  r o l l  and damping 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., October 27, 1964. 
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I 

TABU I. - MASS CHARACTERISTICS OF MODEL AND FULLSIZE! VEHICLF: 

I Characteristics 

W, l b . .  . . . . .  
Ix, slug-ft2 . . .  
Iy, slug-ft2 . . .  
Iz, slug-ft2 . . .  
W/S, lb/sq ft . . .  
~ , d e g  . . . . . .  

Model 
... 

68 
1.63 
8.39 
9-13 
3-15 

0 

Model, scaled up 

2,310 
583 

3,000 
3 , 270 
16.6 

0 

Full-size vehicle 

970 to 2000 
200 to ---- 
s a  to ---- 
920 to ---- 
7 to 20 ----_-_---- 

.~ . ~~ 

12 



P 

a 
Relative wind I 
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3, 
Figure 1.- Sketch of axis systems used in investigation. 

directions of forces, moments, and angles. 
Arrows indicate positive 



T r a i l i n g - e d g e  f l a p s  

D e s i g n  t o w  
p o i n t  

4 0 . 7 5  

r 
E l e v o n  v 

9.35- 1 czzz.z 

1 6 . 5 0  

1 
c- - 3 6 . 5 2  ~ 

1 5 . 7 5  

I_ -. 7 4 . 0 0  - 4 

Figure 2.- Three-view drawing of a model used in investigation. Rudder and 
trailing-edge flap dimensions given in chord plane. 
in inches. 

A l l  dimensions are 
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Forward towline attachment 
at  tunne l  t u r n i n g  vanes 

140-foot towline 

- Wind d i r e c t i o n  

Figure 3 . -  Test setup used f o r  towing the model. 
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Figure 4. - Effect of trailing-edge flap deflection on the longitudinal 
characteristics of the model. 6, = 0'; $ = 0'. 
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Figure 6.- Variation of static lateral  derivatives with angle of attack. 
6f,e = 00; 6, = 00. 
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Figure 7.- Effect of center f i n  on the s t a t i c  l a t e r a l  s t a b i l i t y  derivatives of the 
t e s t  model. bf,= = 00; 6, = 0’. 
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Figure 8.- Incremental l a t e r a l  control coefficients due t o  rudder deflection. 
6f,e = 0'; 6 ,  = 0'; p = 0'. 
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Sr = 00; 6, = 00; p = 00. 
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A motion-picture f i l m  supplement E841 i s  
available on loan. Requests w i l l  be f i l l e d  i n  
the  order received. You w i l l  be  not i f ied of the  
approximate date scheduled. 

The f i h  (16 mm, 10 min, color, s i l en t )  
i l lust rates  the  low-speed s t a b i l i t y  and control 
charac te r i s t ics  of a towed modified half-cone 
reentry vehicle. 
damping i n  roll and of a r t i f i c i a l  damping i n  
yaw on the s t a b i l i t y  character is t ics  are shown. 

The e f fec t s  of a r t i f i c i a l  

Requests f o r  the f i l m  should be addressed 
to :  

Chief, Photographic Division 
NASA Langley Research Center 
Langley Stat ion 
Hampton, V a .  23365 
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I D a t e  

I Please send, on loan, copy of f i lm supplement L-841 t o  
I 

I TN D-2517. 
I 

I - _ _  -~ - 
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I - - - 
I St ree t  number 
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